Year End Review # Unit 1 – Mix and Flow of Matter Complete each of the following questions, relating to the specific learner outcomes, covered this year in Grade 8. The questions in this review reflect what you should have mastered and will be tested on in the **Final Achievement Exam**. The answers will be covered in class. #### Part 1 – Fluids are used in Technological devices and common everyday materials | What does th | ne acronym W.H.M | A.I.S. stand for? | | | |--------------|------------------|-------------------------|---------------------|----------------------------| | W | Н | M | I | s | | Identify the | WHMIS symbols i | illustrated and explain | in what Safety proc | edures should be followed. | | Symbol | Type of Ha | azard | Safety I | Procedure | (T) | Describe 'Slurry' technology | | | |---------------------------------------|---------------------------------------|-------| | | | | | | | | | | | | | Pt 7 Proporties of matte | r, using the Particle Model | | | | ids, liquids and gases (p.7)? | | | Solids | Liquids | Gases | | Solius | Liquius | Gases | | | | | | | | | | hat are the key ideas in the P | article Model of Matter (p. 8)? | | | | | | | | | | | | | | | Describe the action of particles | s in solids, liquids and gases. (p. 9 | -10) | | Solids | Liquids | Gases | | | | | | | | | | | | | # Part 3 – Changes of State | - | (p. 11-12) | nd the termin | | | |--------------|-------------------|---------------|--|--| is matter cl | assified? (p. 13) | 1 | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | | is matter cl | assified? (p. 13) | | | | ### Part 5 - Solutions | Describe a suspension , a colloid , and an emulsion . (p.15) | |---| | | | | | What conditions must be present to enable a material to dissolve in another material? (p.17) | | | | Explain the difference between a solute and a solvent . (p.18) | | | | Why is water called 'the universal solvent'? (p.19) | | | | What affects the rate at which a material will dissolve? (p.19) | | | | What is a saturated solution? (p.21) | | | | Why are some substances insoluble ? (p.24) | | | # Part 6 – Separation Methods | Describe the 'desert tent' method of separation. (p.28) | |--| | | | What is desalination ? (p.28) | | | | Describe how distillation is able to separate the parts of a solution. (p.29) | | | | How is petroleum separated and the fractional parts collected? (p.30) | | | | | | | | | | How is ore (such as gold) mined and collected? (p.31) | | | | | | Describe, in general terms, how sugar is processed from sugar cane. (p.36) | | | | | # Part 7 – Properties of gases and liquids (using the Particle Model) # **Viscosity – Density - Buoyancy - Pressure** | How is the thickness or a thinness of a fluid measured and what is it called? (p. 40) | |--| | Describe some practical applications of the knowledge about viscosity. (p.45) | | How is viscosity in different fluids affected by temperature ? (p. 48-49 | | Calculate density using a formula. (p.57) | | How are mass and volume related, when determining density? | | Describe the density of solids liquids and gases, using the particle model . (p.51) | | | | How is buoyancy determined? | | |---|--| | | | | | | | | | | | | | Describe how a ship (made out of steel) can float . | | | | | | | | | | | | | | | How does a 'cartesian diver' work? | | | | | | | | | | | | | | | | | | What is average density and what benefits does it have? | | | | | | | | | | | | | | | Explain 'Archimedes Principle' and how he came to formulate it. | Describe have such a constructor (n. 60) | | | Describe how scuba gear works. (p. 69) | | | | | | | | | | | | Calculate pressure using a formula. | | |---|---| | What conditions must be met to compres | ss a gas? (p. 73) | | Provide some examples of the advantage | es of compression. | | What effect does atmospheric pressure | have on our body? (p.75) | | How is atmospheric pressure affected by | altitude? (p.75) | | Describe how a fire extinguisher works. | . (p.79) | | Describe the components needed to make | ke a hydraulic system . (p.80) | | What is the primary difference between h | nydraulic systems and pneumatic systems? (p.81) | | | |