Topic 3 – Energy, Friction, and Efficiency

Work and Energy

Machines help people do things that they normally couldn't do on their own. **Work** is a transfer of energy. In the example of the bicycle – your energy (chemical energy from your food) is transferred to the pedals giving them **kinetic energy**, or energy of motion. The pedals transfer this energy to the sprockets and chain, and then to the wheels.

Stored Energy

Stored energy is called **potential energy**. Much of the energy for machines is stored as chemical potential energy. Gravitational potential energy is transferred to kinetic energy in machines in a dam to generate electrical energy.

The watter cycle

Another example of **potential gravitational energy** is the water cycle.

Energy Transmitters

In energy **transmission**, the energy is transferred from one place to another, and no energy is changed or converted.

Energy cannot be created nor destroyed - It is only transformed or transferred

No Machine is 100% Efficient

An ideal machine would transfer all the energy it received to a load or to another machine. However there are no ideal machines. Real machines lose energy. The work output of a real machine is always less than the work input. **NO MACHINE IS 100% EFFICIENT**. The *efficiency* of a machine tells you how much of the energy you gave to the machine is actually transferred to the load. **Efficiency** is a comparison of the useful work provided **by** a machine or a system with the work supplied **to** the machine or system.

> Efficiency = <u>Work done by machine</u> X 100% Work done to make the machine operate

The higher the efficiency, the better the machine is transferring energy. The reason that machines are never 100% efficient is because of the energy that is lost by a machine to **friction**.

Boosting Efficiency

Since some of the effort force put into a machine is used to overcome the frictional force of the machine, there are ways to boost the efficiency of a machine. Lubricants, reducing the surface area interaction where parts rub together and good maintenance of the machine will help to reduce friction and increase efficiency.

Useful Friction

There are reasons why we need friction in a machine for it to perform properly. Slipping and sliding would occur and proper gripping would be impossible without friction. There are many places where friction is useful, including:

Bicycle - tires create friction with the road surface to give you grip

Baseball – *rosin* is used to form a stronger grip with the bat

Gymnasts – also use **rosin** to provide grip on slippery metal surfaces (like rings or bars) Curlers – sweep the ice in front of the rock to decrease friction with the ice surface