Student Name	Class

1.

This symbol means ...

- A. toxic
- B. reactive
- C. corrosive
- D. poisonous

2.

This symbol means ...

- A. toxic
- B. reactive
- C. corrosive
- D. poisonous
- 3. The particle model helps us to understand about the state of a substance by the number of particles that appear to be moving and the relative spaces between the particles. A liquid substance would be represented most likely by model ...

В.

C.

D.

- 4. When a substance undergoes a change of state it can use energy or give off energy. The change that occurs when a substance changes **from a liquid to a gas** is referred to as ...
 - A. deposition
 - B. sublimation
 - C. vaporization
 - D. condensation

- 5. Brass is a solution that is best classified as ...
 - A. element
 - B. solution
 - C. compound
 - D. mechanical
- 6. A colloid is a heterogeneous mixture that is composed of fine particles evenly distributed throughout another substance. An example of a colloid is ...
 - A. milk
 - B. mayonnaise
 - C. flour in water
 - D. hair gel
- 7. Properties are characteristics that can be used to describe how a substance behaves. Ductility is a property that describes a substance's ...
 - A. mixing ability
 - B. reaction with water
 - C. ability to stretch
 - D. toxic effect
- 8. The only list below that describes only chemical properties of a substance is ...
 - A. reactivity, toxicity, stability, malleability
 - B. ductility, crystal shape, miscibility, solubility
 - C. malleability, smell, viscosity, miscibility
 - D. density, conductivity, combustibility, color
- 9. Physical or chemical change can be identified by evidence. When a substance undergoes a physical change the evidence used includes all of the following, **EXCEPT** ...
 - A. colour
 - B. odour
 - C. toxicity
 - D. density

- 10. One of the procedures used today credited to alchemists (part pharmacist and part mystic) is a procedure used to separate mixtures, called ...
 - A. dissolving
 - B. distillation
 - C. desalination
 - D. disintegration
- 11. Lavoisier was one of the first chemists to use a balanced view of chemical change, which we now call the **Law of** ...
 - A. Conservation of Mass
 - B. Definite Composition
 - C. Multiple Proportions
 - D. Combustion

12.

Using electricity to split molecules into their elements is a process called ...

- A. electrolysis
- B. electricity
- C. electroplating
- D. electrorefining
- 13. John Dalton developed a theory that helped explain what happened in the electrolysis of water and was a new way to explain chemical facts and laws. His theory was called the ...
 - A. Quantum Theory
 - B. Atomic Theory
 - C. Raisin Bun Theory
 - D. Plum Pudding Theory
- 14. In science, these do not explain anything. They simply describe and summarize what happens.
 - A. models
 - B. theories
 - C. ideas
 - D. laws

15.

Early chemists used the planets to identify the elements known to them. This later was a problem, when more elements were discovered, because they ran out of planets.

This symbol represent the planet and element ...

- A. Mars iron
- B. Venus copper
- C. Mercury mercury
- D. Jupiter tin
- 16. These elements have both metal and non-metal properties. Some of them are semi-conductors, which means, they can carry an electrical charge under special conditions. Making them great for computers and calculators. They are the ...
 - A. Transition Metals
 - B. Rare Earth Elements
 - C. Metalloids
 - D. Other Metals
- 17. The 6 elements in this group all have the maximum number of electrons possible in their outer s hell which makes them stable. They are known as the ...
 - A. Halogens
 - B. Alkali Metals
 - C. Noble Gases
 - D. Alkaline Earth Metals

- 18. Mendeleev arranged the element cards into a 'solitaire-like' table. He played with them, by sorting and arranging the elements in many different combinations. He was able to identify gaps where elements, would be able to fit, that were ...
 - A. known to exist
 - B. not yet discovered
 - C. rare earth elements
 - D. identified by alchemists
- 19. In 1915 the Modern Periodic Table was reorganized, including more information about each element with a focus on ...
 - A. atomic structure
 - B. Chemical properties
 - C. Physical properties
 - D. reactivity rating
- 20. Vertical columns form a **group** of elements (*numbered* 1-18) The horizontal rows (*numbered* 1-7) are called ...
 - A. lists
 - B. types
 - C. family
 - D. periods
- 21. In the periodic table the following elements would be identified as the Noble Gases.
 - A. Be, Mg, Ca, Sr, Ba, Ra
 - B. Li, Na, K, Rb, Cs, Fr
 - C. He, Ne, Ar, Kr, Xe, Rn
 - D. Rf, Db, Sg, Bh, Hs, Mt, Uun
- 22. As you move across the periodic table the properties of the elements change. The most reactive metals include ...
 - A. sodium and lithium
 - B. iron and copper
 - C. aluminum and carbon
 - D. lead and zinc
- 23. When any of the 112 elements combine into groups of 2 or more they form compounds. If atoms of elements are shared, this type of compound is formed.
 - A. ionic
 - B. atomic
 - C. aqueous
 - D. molecular
- 24. Guyton de Morveau in France developed a standardized chemical naming system in 1787 to determine a chemical name. The type of element that is always first is the ...
 - A. acid
 - B. base
 - C. metal
 - D. Non-metal
- 25. The only compound that contains three elements is ...
 - A. H₂O_(I) Water
 - B. C₆H₁₂O_{6(s)} Glucose
 - C. $CO_{2(g)}$ Carbon dioxide
 - D. NO_{2(g)} Nitrogen dioxide
- 26. In molecular pure substances the bonding between atoms is strong, but the attraction between the molecules is weak. They are good insulators, poor conductors and have a distinct crystal shape. This type of molecular compound is produced when ...
 - A. metals combine
 - B. non-metals combine
 - C. gases and solids combine
 - D. non-metals and metals combine

- 27. A molecule is the smallest independent unit of a pure substance. **Diatomic** molecules are molecules made up of.
 - A. 2 atoms of the same element
 - B. more than 2 atoms of an element
 - C. 1 atom from 2 different elements
 - D. 2 atoms from 2 different elements
- 28. When dissolved in water, the metal (Na) loses an electron and the nonmetal (Cl₂) gains an electron forming an aqueous solution of ions like these ...
 - A. $(Na)+ (Cl_2) +$
 - B. $(Na)-(Cl_2)+$
 - C. $(Na)+ (Cl_2)-$
 - D. (Na)- (Cl₂)-
- 29. Some compounds of copper such as Copper II Sulfate used use a roman numeral in its chemical name. **Cu(II)SO**₄ The roman numeral is used to show ...
 - A. which ion is used
 - B. how the ion is used
 - C. the order of ions used
 - D. how many ions are used
- 30. Generally when looking at patterns in the periodic table this can be said about elements in a group ...
 - A. They all have the same density
 - B. They react very violently
 - C. They all have the same ion charge
 - D. They all have different ion charges
- 31. A chemical change, which **releases** energy, is called ...
 - A. exothermic
 - B. endothermic
 - C. combustable
 - D. dangerously reactive
- 32. A chemical equation may look complicated, but, by knowing what you know now, it should be much easier to understand

$$HC_2H_3O_{2(1)} + NaHCO_{3(q)} \rightarrow NaC_2H_3O_{2(aq)} + H_2O_{(1)} + CO_{2(q)}$$

This chemical equation happens when you mix ...

- A. vinegar and calcium carbonate
- B. carbon dioxide and flavored water
- C. calcium carbonate and water
- D. vinegar and baking soda
- 33. The following word equation identifies what happens when hydrogen peroxide is left out in the sun. It changes to water and oxygen gas.
 - A. Water + Oxygen → Hydrogen peroxide
 - B. Hydrogen peroxide + Energy Water + Oxygen
 - C. Water + Energy + Oxygen → Hydrogen peroxide
 - D. Hydrogen peroxide + Oxygen → Water + Energy
- 34. To treat an injury in sport, *cold packs* are used to reduce the swelling where the injury occurs. These cold packs are examples of ...
 - A. Endothermic reactions
 - B. Exothermic reactions
 - C. Combustion reactions
 - D. Corrosion reactions
- 35. Enzymes are catalysts used in our body to break down food. Without the presence of enzyme the reactions in our body would ...
 - A. require much higher temperatures
 - B. produce different substances
 - C. happen more quickly
 - D. not occur at all

- Some substances are used in foods to slow down decomposition. Plant seeds prevent germination until the right conditions are present by these natural ...

 - A. reactors
 B. enzymes
 C. catalysts
 D. inhibitors
- By crushing a tablet of medicine before you take it, you are changing the reaction rate by changing the ...
 - A. temperature
 - B. surface area
 - C. concentration
 - D. a catalyst
- Corrosion protection involves protecting metal from contact with the environment and the factors that affect the reaction rate of this chemical reaction. Coating a corrosive metal with a thin layer of zinc is called ...
 - A. galvanization
 - B. sterilization
 - C. electrolysis
 - D. electroengineering
- 39. H H HH-C-C-C-H(Propane C₃H₈) Н Н

The burning of propane (C₃H₈) in a barbeque is an exothermic reaction that produces heat to cook the food. If the heat is too intense, the products being cooked (will be burnt) will be changed into.

- A. hydrocarbons
- B. hydrogen dioxide
- C. carbon monoxide
- D. pure carbon
- Burning fossil fuels (such as propane) produces carbon monoxide, carbon dioxide, sulfur oxides, nitrogen oxides, smoke, soot, ash and heat. These products are called ...
 - A. pesticides
 - B. pollutants
 - C. combustibles
 - D. hydrocarbons

Complete the Numerical Response Questions that follow on the next page

Numerical Response Items

- 1. Match the description of the Theory of Matter with the time it occurred.
 - 1- Chemists only investigated materials that had a high value to humans
 - 2- The use of simple tools and the discovery of fire
 - 3- The work of Dalton suggests matter is made up of elements
 - 4- A group of Hittites discovered how to extract an element from rock

Stone	Bronze	Iron	Atomic
Age	Age	Age	Theory

	•	
0	0	0
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9
	0 1 2 3 4 5 6 7	0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

2. The law of **conservation of mass** in a chemical reaction states that the mass of the products will equal the mass of the reactants.

$$\underset{24.3 \text{ g}}{Mg(s)} \quad + \quad \underset{32.1 \text{ g}}{S(s)} \quad \longrightarrow \quad \underset{Mass?}{MgS(s)}$$

What is the mass of MgS ?

		•	
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

3. Match the WHMIS Symbol with the description of the Hazard.

Toxic

Biohazard

Flammable

Oxidizing

	•	•	
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9