Review Booklet #### 1.0 Fluids are used in Technological devices and common everyday materials - Key Concepts Workplace Hazardous Materials Information System (WHMIS) and safety - fluid properties | | H | M | I | S | |---------------|---------------------|-------------------------|-------------------|-----------------------------| | ognition of | WHMIS symbols is | s important to lab safe | ety. Identify the | following WHMIS symbols. | | | | | | | | | | | | | | | | | R | | | | | | (<u>T</u>) | | | uids are used | l in many different | ways. Describe how | fluids are used | in the following processes: | | ırries | | | | | Glass Production _____ Toothpaste _____ **Review Booklet** Give examples of practical applications for each of the following fluid properties: | viscosity | | | |------------|--|--| | density | | | | buoyancy | | | | hydraulics | | | | pneumatics | | | #### 2.0 The properties of mixtures and fluids can be explained by the particle model of matter. - Key Concepts organization of pure substances and mixtures - · concentration and solubility - factors affecting solubility - The particle model Matter can be organized in different ways. One way is as solids, liquids, and gases. Another way is as mixtures and solutions. Complete the Organizational Chart | Describe a suspension, a colloid, and an emulsion. | | | | | | | |--|--|--|--|--|--|--| Describe the process of paper chromatography and give examples of practical applications. | |--| | | | What conditions must be present to enable a material to dissolve in another material? | | Explain the difference between a solute and a solvent . | | Describe the difference between Concentration and Solubility . (24-28) | | What is a saturated solution? (p.21) | | Why are some substances insoluble? | | What factors affect solubility ? | | Why is water referred to as the universal solvent? | | What is an aqueous solution? | | | | Particle Model of Matter (p.33) |) | L0 | |--|---------------------------------------|-----------| | at are the 4 key principles explair | ned using the Particle Model of Mat | ter? | strate the action of particles in sol | ids, liquids and gases. | | | Solids | Liquids | Gases | at factors affect the rate of dissol | ving? | | | | | | | | an be explained by the Particle Model | of matter | | Key Concepts • Viscosity • Density | | | | BuoyancyPressure | | | | at is viscosity , how is it measur e | ed? | | | | | | | | | | | Describe some practical applications using knowledge about viscosity. | | | | |---|--|--|--| | | | | | | How is viscosity affected by temperature? | | | | | | | | | | What formula is used to calculate density? | | | | | | | | | | How are mass and volume related, when determining density? | | | | | Describe the density of solids liquids and gases, using the particle model . | | | | | What is buoyancy and how is it determined? | | | | | Describe how a ship (made out of steel) can float . | | | | | | | | | | How does a 'cartesian diver' work? (p. | .50) | | |--|---------------------|---------------------------| | | | | | What is average density and what ber | nefits does it h | nave? | | | | | | Explain 'Archimedes Principle' and ho | ow he came to | o formulate it (Eureka!). | | | | | | | | | | | | | | The Plimsoll Line | Legend
TF | | | <u>TF</u> | F | | | <u> </u> | т | | | S | S | | | W | W | | | WNA | WNA | | | Describe how the Plimsoll Line works. | | | | | | | | | | | | | | | | Describe how Hot Air Balloons use the | e principle of | buoyancy. | | | | | | | | | | | | | | Describe what compressibility is. | |--| | | | What conditions must be met to compress a gas? | | | | Pascal's Law states: | | | | Calculate pressure using a formula. Provide some examples of the advantages of compression. | | | | What effect does atmospheric pressure have on our body? | | | | How is atmospheric pressure affected by altitude? | | | | | ents needed to make a hydra u | | |---|---|-------------------------------| | What is the primary d | ifference between hydraulic s | ystems and pneumatic systems? | | Many technologies Key Concepts Explain how deterger | compression and decompresflow rates to move fluidsfactors affecting reaction rate | ssion | | What is a hyperbaric | chamber? | | | Illustrate and describe | e how the following technologie | es work to move fluids. | | Diaphragm Pump | | Bicycle Pump | | Archimedes Screw | | Pipeline pig | | | | | | What is a valve used for? | | | |--|---|--------------------------| | What is a bathyscaph? | | | | | | | | Using pictures and a brief explanati
This website will help you - http://wx | on describe how a submarine works
ww.physics.sfasu.edu/astro/social/so | . (p.71)
ocial016.htm |