

Space Exploration

Name Class

The first two questions are **NUMERICAL RESPONSE** questions. Complete these on this page.

The **Hertzsprung - Russell** diagram (which includes data from thousands of stars) graphs the brightness and temperature of each class of star. Rank the stars from hottest to coolest.

0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

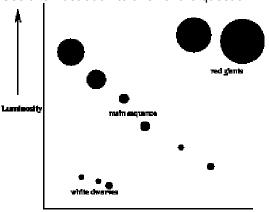
Place these events that represent a small part of the early achievements of space science in the order they happened, beginning with the earliest.

- 1 Sputnik 1
- 2 International Space Station
- 3 Goddard's liquid fuel
- 4 Archytas's pigeon

1.1 Early Views About The Cosmos

- 1. Many dates in the celestial calendar are marked by the amount of daylight. In the Northern Hemisphere the longest day occurs on June 21 and is called ...
 - A. Vernal equinox
 - B. Autumnal equinox
 - C. Summer solstice
 - D. Winter solstice
- 2. The width of a mitt was used by the **Inuit** peoples in the high Arctic to gauge the height of the Sun above the horizon. When it rose to one mitt-width high it meant ...
 - A. The days would get longer and warmer
 - B. The nights would get colder and shorter
 - C. Seal pups would be born in two lunar cycles
 - D. The Northern Lights would shine their brightest
- 3. Copernicus proposed a different model to explain planetary motion. His model, called the Heliocentric model. Galileo Galilei later confirmed his model, in his observations with one of the first telescope. But it was this Johannes Kepler, who put in place what was missing from Copernicus' model. He realized that the orbits of the planets were ...
 - A. circular
 - B. geocentric
 - C. intersecting
 - D. ellipses

1.2 Discovery Through Technology


- 4. In the 2nd Century A.D. Egyptian astronomers used an instrument, called a **quadrant** to ...
 - A. measure the angle between the Moon and any given star
 - B. identify details in the far reaches of the night sky
 - C. chart astronomical position and predict the movement of stars
 - D. measure a star's height above the horizon
- 5. Arabian Astronomers used an instrument, called an **astrolabe** to ...
 - A. measure the angle between the Moon and any given star
 - B. identify details in the far reaches of the night sky
 - C. Make accurate charts of star positions predict the movement of stars
 - D. measure a star's height above the horizon
- 6. When measuring the diameter of the sun, we use an indirect method, so that we can determine the diameter without actually measuring it directly. To calculate the accuracy of your measured value, this is calculated to show how far from the real value your measured value is ...
 - A. actual error
 - B. estimated error
 - C. percent error
 - D. adjusted error

1.3 The Distribution Of Matter In Space

- 7. In the 1920's two scientists began comparing the surface temperature of stars with the star's luminosity. They graphed their results in what is referred to as the ...
 - A. Solar Shift Model
 - B. Hertzsprung-Russell Diagram
 - C. Wegener-Darwin Illustration
 - D. Helio-Solar Diagram

Use this illustration to answer the question ...

- 8. What they discovered when plotting their data was that ...
 - A. star temperature and brightness was not random
 - B. star temperature and size were related
 - C. star brightness and size were related
 - D. star size and shape were related to brightness
- At the end of the life cycle of a star it explodes in a catastrophic event called a ...
 - A. massive
 - B. supergiant
 - C. black hole
 - D. supernova

1.4 Our Solar Neighborhood

- 10. Constellations are groupings of stars that we see as patterns. The International Astronomical Union recognizes 88 officially. There are other patterns that are unofficially recognized, such as The Big Dipper, and are known as ...
 - A. anomalies
 - B. asterisms
 - C. asteroids
 - D. aspergummies
- 11. Solar winds pass the Earth at an average speed of 400 km/s. This protects us from the devastating effects of the solar winds ...
 - A. Earth's atmosphere
 - B. Earths gravity
 - C. Earth's magnetic field
 - D. Earth's ozone
- 12. During a solar eclipse this is visible ...
 - A. the sun's core
 - B. the sun's electromagnetic shield
 - C. the sun's atmosphere
 - D. the sun's corona

1.5 Describing The position of Objects In Space

- 13. The direction directly overhead is called ...
 - A. azimuth
 - B. altitude
 - C. zenith
 - D. astroplane

- 14. To locate an object in the sky, two questions must be solved. How high is it in the sky? and in what direction is it? The term that identifies the **compass direction** is ...
 - A. azimuth
 - B. altitude
 - C. zenith
 - D. astroplane
- 15. When constructing an astrolabe to locate the position of a star in the night sky, the **protractor** is used to determine the ...
 - A. azimuth
 - B. altitude
 - C. zenith
 - D. astroplane

2.1 Getting There: Technologies for Space Transport

- 16. Getting a rocket into space was the first hurdle to overcome in order to be successful with space exploration. The speed that is needed is 28,000 km/h. This speed is referred to as the ...
 - A. Maximum thrust
 - B. Speed of sound
 - C. Escape velocity
 - D. Speed of light
- 17. What did the Chinese of the 1st Century build to demonstrate their understanding and use of rockets?
 - A. a 'pigeon'
 - B. a satellite
 - C. steam
 - D. arrows
- 18. Rocketry relies on a fundamental law of physics, ...
 - A. Force is relative to distance
 - B. For every action there is an equal and opposite reaction
 - C. Gravity is a force that relates to rockets
 - D. Speed is equal to the force of gravity in the opposite direction

2.2 Surviving There: Technologies for Living In Space

- 19. The damaging effects of cosmic radiation is considered to be ...
 - A. An environmental hazard
 - B. A psychological challenge
 - C. A confinement problem
 - D. A microgravity threat
- There are several harmful effects to the body when living in microgravity for extended periods of time. Muscles ...
 - A. lose their color
 - B. expand
 - C. get brittle
 - D. shrink
- 21 This is how oxygen is produced on the International Space Station.
 - A. Recycled water
 - B. Filtering CO₂
 - C. Heated air
 - D. Nitrogen control

2.3 Using Space Technology to Meet Human Needs on Earth

- 22. **LANDSAT** and **RADARSAT** are Canadian satellites that monitor ships at sea, soil quality, track forest fires, report on environmental change & search for natural resources. These satellites are **NOT** in ...
 - A. Earth orbit
 - B. geosynchronous orbit
 - C. use 24 hours a day
 - D. alignment with radar stations on the Earth
- 23. **GPS** satellites enable you to find out your exact position on the Earth at any time. 24 GPS satellites are orbiting the Earth at all times. To use the GPS system you need to get a signal from ...
 - A. 2 of them
 - B. 3 of them
 - C. 4 of them
 - D. 6 of them
- 24. Space Age materials are used on the Earth as well as in space. The improvement of **traction** on car winter tires is the result of an application originally developed for ...
 - A. parachute material for the Viking space mission
 - B. voice-controlled wheelchairs
 - C. structural analysis of a spacecraft
 - D. microlasers for communication

3.1 Using Technology To See the Visible

- 25 **Interferometry** is a technique of using telescopes in combination. The advantage of using two or more telescopes together is that astronomers are able to ...
 - A. work together
 - B. see more detail
 - C. hypothesize about images
 - D. create more colorful images
- 26 One of the newest innovations for ground-based optical reflecting telescopes is the use of ...
 - A. metal instead of glass
 - B. liquid instead of glass
 - C. segmented mirrors
 - D. mirror arrays
- 27 The **Hubble Space Telescope** offers a solution to the problems faced by astronomers on the Earth. Despite the remote mountain locations of ground-based telescopes to get away from light and air pollution, astronomers on the Earth still have to deal with interference caused by ...
 - A. noise
 - B. aircraft
 - C. weather
 - D. earthquakes

3.2 Using Technology to See Beyond the Visible

- Optical telescopes give us information based on visible light. However, objects in space, such as stars and galaxies, also emit many forms of electromagnetic energy. The energy form that has the longest wavelength is ...
 - A. infrared
 - B. gamma
 - C. x-ray
 - D. radio

- 29 Although **neutral hydrogen** (which makes up a large bulk of matter in space) emits no light, it does emit energy at a specific wavelength. Astronomers are able to map out this neutral hydrogen in our Milky Way galaxy by using these type of telescopes ...
 - A. radio telescopes
 - B. infrared telescopes
 - C. refracting telescopes
 - D. interferometry telescopes
- 30. **Radio Interferometry**, the combinations of many radio telescopes enables astronomers to improve performance and accuracy of images. They can more accurately measure position if they are ...
 - A. at a higher altitude
 - B. closer to sea level
 - C. closer together
 - D. further apart

3.3 Using Technology to Interpret Space

- 31. If you have a baseline and know the angles to an object an unknown distance away you can accurately determine its actual distance away by using this method ...
 - A. triganometry
 - B. interferometry
 - C. triangulation
 - D. base ten math
- 32. **Parallax** is the *apparent shift in position of a nearby object when the object is viewed from two different positions*. Astronomers use a star's parallax to determine ...
 - A. what angles to use when they triangulate the star's distance from Earth
 - B. it's orbital velocity and rotation compared to the Earth
 - C. it's actual distance from our Sun, measured in parsecs
 - D. the degree of shift that will account for its relative position in the night sky
- 33. A police officer might pull you over because you were speeding. The officer can prove you were traveling at a certain speed because the radar device that is used sends out a radio signal that reflects off your vehicle. The difference in wavelength is the speed you are traveling. This is a practical everyday application of this scientific principle the ...
 - A. parallax effect
 - B. spectrometer effect
 - C. ripple effect
 - D. doppler effect

4.1 The Risks and Dangers of Space Exploration

- 34. There are risks to sending astronauts to the moon. During a routine mission to the moon, Apollo 11 had to readjust their landing site, when the original site was found to be too rocky. Their precise fuel supply restricted them to
 - A. try 1 more landing
 - B. try 2 additional landings
 - C. try 3 additional landings
 - D. scrub their mission and return to Earth.
- 35. A hazard for satellites in space is the Sun. Without adequate protection from a surge of electrically charged particles (a 'coronal mass ejection' also called 'solar flares') this could occur ...
 - A. misdirection of signals
 - B. fried electrical circuits
 - C. orbital failure
 - D. system software glitches

- 36. One hazard to us on Earth is the re-entry of a satellite. Most of the satellite will burn up, but this type of debris can cause us great harm ...
 - A. reflective
 - B. radioactive
 - C. reactive
 - D. re-entry

4.2 Canadian Contributions to Space Exploration and Observation

- 37. There are three main systems of the *Canadarm 2* used on the *International Space Station*. The part that travels along a rail system to move into different positions on the station is called ...
 - A. Monorail Repair Unit
 - B. Mobile Base System
 - C. Remote Manipulator System
 - D. Special Purpose Dexterous Manipulator
- 38. Canada launched a satellite in 1972 making it the 1st nation to use a satellite for ...
 - A. GPS locator beacons
 - B. finding natural resources
 - C. broadcasting television signals
 - D. military use
- 38. The 1st Canadian to go into space was ...
 - A. Sir Edward Sabine
 - B. Chris Hadfield
 - C. Robert Thirsk
 - D. Marc Garneau

4.3 Issues Related to Space Exploration

- 40. One of the benefits to spending all that money on space exploration is the potential for 'mining' natural resources. The place where these natural resources hold the greatest promise is on the ...
 - A. Moon
 - B. Mars
 - C. Jupiter
 - D. Asteroid Belt
- 41. Although space exploration holds great promise and potential, there are political, ethical, economic and environmental issues associated with continued exploration endeavors. *Do we have the right to spend money on space exploration rather than fixing our problems here on Earth?* This issue would be classified as ...
 - A. ethical
 - B. political
 - C. economic
 - D. environmental
- 42. **Who owns space?** In order to establish an answer to a question such as this, it must be discussed and reflected upon. This type of guestion is considered to be ...
 - A. a decision
 - B. an issue
 - C. rhetorical
 - D. a solution